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Uniform Fluids 
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A statistical mechanical treatment of equilibrium elasticity of a uniform fluid 
phase based on density functional theory is presented. Bulk expressions for the 
stress tensor and the zero-frequency elastic moduli tensor involving the direct 
correlation function are found. 
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1. I N T R O D U C T I O N  

In a recent group of publications Bavaud e t a l .  ~ 31 began a study of 
equilibrium and nonequilibrium elasticity in the framework of classical 
statistical mechanics. A general expression for the stress tensor ~ and the 
zero-frequency elastic moduli tensor B~f~v in terms of correlation functions 
was derived in ref. 1 by a generalization of Green's (4) scaling method. 
Working in the finite-volume canonical and grand canonical ensembles, 
they found an expression for the elastic moduli tensor involving two-, 
three-, and four-point correlation functions. Taking the infinite-volume 
limit in the grand canonical ensemble and assuming two-body short-range 
interactions with a clustering of first moment  integrable for the correlation 
functions, (5~ they showed the absence of shear for fluid systems and a bulk 
modulus equal to the inverse of the isothermal compressibility (which is 
expressed in terms of the two-point correlation function only). The 
statistical mechanical approach of equilibrium elasticity was continued by 
Bavaud, (2~ who found new expressions for the elastic moduli in terms of 
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"wall" expressions. These expressions involve the derivative of the one- 
particle density and the two-point correlation function, both on the 
boundary of the domain which confines the fluid. The main point of this 
new method is that it is valid for any force derivable from a potential, 
without assuming restrictions as pairwise central interactions. 

In this paper, I report an alternative statistical mechanical treatment 
of equilibrium elasticity of a uniform fluid phase based on density func- 
tional theory. This formalism has been recently applied to the determina- 
tion of the elastic constants of a uniformly strained hard-sphere solid. It is 
my purpose here to show that, unlike the hard-sphere solid, where a careful 
choice of the approximations used to evaluate the functionals (6'7/ and the 
one-particle density of the deformed solid (8) is required, the elastic moduli 
of a uniform fluid phase can be derived in a straightforward way from a 
direct correlation function approach. 

2. DENSITY FUNCTIONAL F O R M A L I S M  

Our starting point are the formal expressions (9) for the total 
Helmholtz free energy Fv[Po] and the grand potential ~?v[Po] of a non- 
uniform fluid, which are functionals of the one-particle density po(r), as 
integrals with respect to density of the direct correlation function, i.e., 

Fv[Po] = kB Try dr p0(r){/3qS(r) + ln[A3p0(r)] - 1 } 

1 +k.Tfo d;.(;.- 1) fv po(r) fv dr'p~176 

and 

g2v[Po]=kBTfvdrpo(r){fjd22fvdr'po(r')c(r,r';[2po])-I } (2) 

where ~b(r) is an arbitrary external field which couples to the local number 
_~]u 0(r--ri), po(r) (Do(r)), where the brackets denote density Do(r)-  i=1 = 

the average over the grand ensemble,/~ = 1/kB T, A = h/(2rCmkB T) 1/2 and V 
is the volume. 

Equations (1) and (2) were originally obtained by Stillinger and 
Buff (1~ using expansion techniques and by Lebowitz and Percus (11) from 
functional integration methods. These formal expressions are useful 
provided one can evaluate the direct correlation function c(r, r'; [2po]) 
for all density distributions 2po(r) (0~2~<1),  which is an unsolved 
problem. (12) 
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For uniforms fluids [ r  several simplifications occur. In fact, 
the one-particle density is a constant p0(r)= P0 and all the functionals of 
p0(r) become ordinary functions of Po- With regard to the direct correla- 
tion function, we have c(r, r'; [2po] )=c( I r - r ' I ;  2po), where the transla- 
tional and rotational symmetries of the fluid have been taken into account. 
All these simplifications lead to the following exact expressions for the 
thermodynamic potentials Fv(Po) and f2v(Po ) of a uniform fluid 

and 

If ] = dp pc(r; p) - ; o  (4) Qv(Po) kB TV dr j0 

where the spatial integration is understood to be taken over the finite 
volume V. We also note that in deriving Eq. (3) we used the identity 

pc(r; p) = Po dp c(r; p) - dp dp' c(r; p') (5) 
~0 0 

which can be easily checked by a simple integration by parts. 

3. ELASTIC M O D U L !  

Elasticity deals with the change in free energy with respect to a small 
deformation characterized by a matrix ~ relating the deformed x'~ and 
original x~ positions of the same material point by the linear transforma- 
tion 

x'~ = D~x~ (6) 

D~ = b~ + u~ (7) 

where u~(lu~l  ~ 1) denotes the displacement gradient tensor, which is 
assumed to be independent of x~, 3~ being the Kronecker delta. As usual, 
a summation over repeated Greek indices (a = 1, 2, 3) will be implied 
throughout. Let us denote the volume in the deformed state by V' and the 
deformed one-particle density by p~. The stress tensor and the elastic con- 
stants are defined by the linear and second-order terms of the expansion of 
the strained Helmholtz free energy Fv,(P'o) with respect to the displacement 
gradient tensor, i.e., 

1 Fv,(p'o)=Fv(po)+ Vv~(V) u ~ + ~ V A ~ ( V ) u ~ u y v + O ( u  3) (8) 
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where %~(V) denotes the stress tensor and 

B~eTv (V) = A=e~ (V) + a~z~y(V) - 67~%e (V) (9) 

is the zero-frequency elastic moduli tensor (see refs. 1 and 7 for a more 
detailed account of the different sets of elastic constants). We note that, 
working in the grand canonical ensemble, the mean number of particles 
during the deformation has to be kept fixed. As the deformed volume is 
given by 

V'= IOI V= [-1 + 6=~u~ + �89 - a~.~ae0 u=~u~ + O(u3)] v 

we readily find for the deformed number density 

I " 1 po= II)[-1 po= [1 6=~u=~+~(6=~a~+a=Tam)u=l~u~+O(u3)]po 

From Eq. (3) and after scaling the coordinates in order to integrate over 
the original volume V, we find for the Helmholtz free energy of the 
deformed fluid 

rv,(P'o)=kBTpoV[ln(A 3]~[ l p0 ) - 1 ]  

,r r  
- k " T { D I 2  VJvdr J0 dp ff dp'c(~r;p') (10) 

Equation (8) can be derived from (10) in a quite straightforward way, 
yielding 

fl%p(V)=-&=~poIl-fvdrf:~ 

- f vdr f f~  dp'(26=~+xeV~)c(r;p ') (11) 

and 

= 1 _ 1 a 

-2 a~wae~P~ 2 =~67~P~ Jv dr c(r; Po) 

with V~ = O/ax=. 

- fvdr ff~ f~ dp' (26~a~-a~.ea/~v 

1 + 28~l~XvV ;, + ~ x~xTV~V~) c(r; p') 

+ Po fvdr ff~ (~ a~a~-~ a~a~v + a~x~V~) c(r; P ') 
(12) 
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4. I N F I N I T E - V O L U M E  L I M I T  

In the thermodynamic (infinite-volume) limit, Eqs. (11) and (12) are 
considerably simplified if we assume that the direct correlation function 
has an integrable clustering, i.e., c(r)~r -(3+~) (~>0)  as r--~ ~ .  I stress 
that this assumption is weaker than assumption (a2) in ref. 1. There, the 
two-body potential was assumed to be of first moment integrable and all 
the n-point (n = 2, 3, 4) correlation functions to have a clustering of first 
moment integrable. Note that the present treatment is free of the restriction 
of considering pairwise spherical potentials, a well-known property of the 
density functional formalism. Moreover, the integrable clustering of c(r) is 
expected to be valid even at the critical point [see Eq. (17) below]. With 
this assumption, a simple integration by parts in (11) leads to the following 
expression for the infinite-volume limit of the stress tensor 

[f :o 1 z~Z=vlim ~/~(V)=-6~zkBT Po- dr dppc(r;p) (13) 

where the spatial integration is now carried out over an infinite volume. 
The process can be clearly continued in the same way for the fourth-order 
tensor A~.ev(V) to find 

A~r lim A~.~(V) 
V ~  

L = ka T c5~6~po-- 6~6~,~p o dr c(r; Po) 

+ (6~67,.-~.~c~.) f dr f[~dp pc(r; p)] (14) 

From Eqs. (10), (13), and (14) we get for the zero-frequency elastic 
moduli tensor 

[ ; 1 B ~ v =  lim B~.~.(V)=~B6,e~.kBTpo 1 - p o  drc(r;po) (15) 

For an isotropic system B~,/~ = 26~6~ + # ( 6 ~  + 6~v6~,~) with 2 and 
# denoting, respectively, the bulk modulus and the shear modulus. Com- 
paring this result with Eq. (15), one obtains a vanishing shear modulus for 
uniform fluids. 

Finally, in order to give a physical interpretation to the terms on the 
right-hand side of Eqs. (13) and (15), we consider the infinite-volume limit 
of Eq. (4) and note that for a uniform fluid the pressure P is given by (~3~ 

IJ : ~ ] P =  lim [-s Po- dr dppc(r;p) (16) 
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the inverse of the isothermal compressibility can be readily 

Z ~ ~ = Po( OP/c3po)T= kr~ Tpo [ 1 -  po f dr c(r; po) 1 

In summary, we have z~ =-P6~,r and -1 
dance with the results of ref. 1. 

(17) 
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